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Lectures on the Quantum Mechanics of the Electron in Hydrogen atom
Lecture Objectives:

. To introduce the details of the three dimensional Hamiltonian operator for
electron in the hydrogen atom.

. Tointroduce the concept of coordinate transformation between Cartesian
and polar coordinates in two dimensions and Cartesian and spherical polar
coordinates in three dimensions.

. To express the partial derivatives in both coordinates and to derive the
kinetic energy operator for the electron in the hydrogen atom in spherical
polar coordinates.

. Toillustrate the separation of the variables for hydrogen atom wave
functions (r, @ and ¢) and write down solutions to the hydrogen atom which

are obtained as part of a standard method for solving differential equations.

. To provide visual aids to analyze the angular distribution of the wave
functions and determine the number of nodes, signs of the wave functions in
different regions of space and the orthonormality properties of the wave
functions.

. To calculate radial and angular probabilities as well as obtain average values
of measurable quantities.

. To introduce spin of the electron in an ad hoc manner as a fundamental
property of the electron and discuss electronic structure and the build-up

principle for many-electron atoms.

Lecture Deliverables:
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This is a long lecture. At the end of reading this and doing the calculations as
directed, the student will be able to do the following:
1. Visualize the energy levels and write down the wave functions of all one-
electron atoms.
. Write down all the degenerate orbital wave function (angular functions) and
identify their functional dependence on the three quantum numbers,

n, I and m.

. Determine the shapes of p, d and f orbitals and the nodes and signs of all

angular distributions.

. Be able to calculate probability densities of different wave functions and
identify nodes of them.

. Be able to calculate most probable radii for all orbitals, average values of
radii for all orbitals and average values for kinetic and potential energies for
each state of the electron in the hydrogen atom.

. Be able to verify that the electron cannot be simultaneously located in more
than one orbital through calculation of overlaps between wave functions.

. Br prompted to study the process of solution of the three differential
equations (Laguerre equation, Legendre equation and the associated
Legendre equation).

. Be able to organize the orbitals according to an approximate sequence of
increasing energies and apply Aufbau principle for arriving at the electronic
configuration of polyelectronic atoms.

. Be able to calculate eigenvalues for states of electron spin in a magnetic field.

Lecture Summary:

1. The Hamiltonian for the electron in the hydrogen atom (that of a reduced
mass in the two-body problem of proton-electron) is written in Cartesian
coordinates.

. A procedure for transforming the Cartesian derivatives and wave functions

to spherical polar coordinate forms is described and illustrated.
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. The spherical polar form of Hamiltonian is separated into three component

differential equations, one each for r, 8 and ¢. The process of separating the

equation is instructional to suggest how to handle similar differential
equations in physics and engineering and in the use of other coordinate
systems.

. The solutions for the radial and angular parts of the differential equations are
enumerated.

5. Visual aids using two and three dimensional animations are provided.

. The probability density and spherical volume are derived and expectation
values of average kinetic and potential energies are given for sample states of
the electron.

Lecture Details:
1. Use of partial derivatives and coordinate transformations.

Cartesian to polar coordinates. (Two dimensions)

(x.y) = (r,0)

x=rcosé
y=rsinf
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Inverse relation:

A function of f(x, ), if itis to be expressed as a function of, r and @ it is first changed by
substituting the above.

Thus, for example,
fxy)=xy

= r’cos’@-rsin@

= r'cos’Bsin@=g(r,0)

¥ _

. 2xy = 2rcos@-rsin@

=2r?cos@sin@

The next step is to define the derivative operator using the coordinate
transformation.

After coordinate transformation one gets

¥ _¥ o

ox oJr ox d0 ox

The derivatives of rand & with respect to x may be calculated as
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Therefore, the action of the derivative aion the function f(x,y)is the same as the
X

action of coseaa—r— g% ong(r,6).
g(r,0) = r’cos’Bsiné
%
or
og
a6

3r% cos’ Osin @

= r’(-2cos@sin* §+cos’ )

3L _ (cose 28 . sm028
ox (cosO or r 80]

(3r2 cos’ 0sin0)cos6 +r (-2cos6sin2 6 +cos’ 0)(-#]

= 277 cos’ @sin@+2r’ cosBsin’ @
=2r’cos@siné

The operator %(on » »y) = 2xy is the same as the operator

9 sin6 D)
(cosear . aa)on r'cos @siné

The lesson:

9
The operator — acts on =f(x, y) to give a result, which is same as the operator

ox

d sinf d
(coso =3 T%] on g(r,0)

Any other method gives inconsistent results.

This is the meaning of the equivalence of the two operators.

o i (cose & . SO
p is (cose 3 - 30)

Likewise for ai:

y
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a o a Wia =sin(98—g _C()sea_g

d9f _or dg . 36 dg | |
y y or 9y 98 G £3 30 (This may be verified by you) (9)

2. Spherical polar coordinates (three dimensions): (transformation from Cartesian

coordinates)
Here are some pictures to indicate the relations between Cartesian components and

spherical polar coordinates in three dimensions.

In Cartesian co-ordinates

-— A A A
r=xx+yy+zz

T sinbcosd —
y

In Spherical co-ordinates
x = I sind cos®
y =r sinosin¢

Z=rcoso

The range of polar angle 6 and the azimuthal angle @ for a sphere are shown below:
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x=rsiné@coso
y =rsinésing (10)
z =rcosé@

Inverse relation:

(11
¢=tan™ 4
b
Question 1
Verify the inverse transformation relations (r60)
%)
A function of x, y,z givenby f(x,y,z) has derivatives —1 i a—f 3 ai etc.
ox " dy oz
7
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If the function is expressed in terms of 7, 6, ¢ then the derivative can be expressed in

d B
terms of —

or 96" a¢

o _ o o I 96,9 9¢
dx Or ox 096 ox a¢ ox
Likewise

J _

_ 9 or 3f 80+3f 90
o oz 30 dz 99 oz

Thus the derivative equivalence is

9 _9 2,909 ,3 d

x ox or ox 90 ox 09
P)

and similarly for other derivatives i and —

dy oz

Problem 2
Jd d

Express i and i intermsof — |, — | —.

oz or 96’ 90
The quantities we need to know:

or 0960 90
a—, a d a for g
ar 90
ay 8 and — ay for ay
Jar 96 90
T Tmd g fr
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P = e e

or

=— X ___ —sinfcos
TR S .

=sin@sing

_cosfcos¢
r

_cos@sing
r

- 2
~EENENS T w00 pmD

cosfsing 9 % cos¢ 9
r d6  rsinf 9o

sin8~sin¢a% +

d sinf d

o r 90

Scanned with CamScanner




3. The Laplacian in spherical polar coordinates:

P Of _9(F
o ax[ax]

— [ d  cosfcosg d _ sing 9 of cosBcos¢af sing df
(s“f”gc"war+ Y rsin08¢) (sm9°°¢ r a6 rsin08¢]

" 9 f sinfcos’ gcosf 9 sinBeosfcos’ ¢ 9 f
MRS E @ r  ad
cos¢sm¢ df singcos¢ 9°f N cos’0cos’ ¢ d f
r’ 99 r ordg r or
, cosBsinfcos’¢ 9°f  cos@sinBeos’ 9 0 f . cos’@cos’ ¢ 9*
r 009r r 20 r’ 06’
. cos 0cos¢sm¢ af cosOcos¢sm¢ 3 f . sin*¢ df
r’sin’@ 99 r’sin@ 0899 r or
__singcos¢ 9* f " sin®¢cos@ df _singcos@cosd 9 f
r 00dr  r’sin® 060 r’sin@ 9990
sm¢cos¢ ) o . sin¢ 9*f
r*sin’@ 3¢ r’sin’@ 9¢’

sin@sin ¢ai+
yr

cos@sing 9 . cosg i] (smesmgbaf LCosOsing f | cosg af]

r 96 rsin@do r 80 rsinf d¢
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[ ..., 9 sin@cosBsin’ 99f , sinfcosBsin’g & f
sin®Bsin -~ S0 e e
_ cos@sing af singcos¢ 9* f +coszesm 0df

A a¢ r  orog r ar

r
cosBsin@sin’¢ o’ f  cosBsinfsin’¢df S cos 2@sin’ ¢ 0 f
2 r2 802

YT 8o ¢ e

N cos29c0s¢sin¢ 9f , cosfcosgsing 3 f R cos’¢af
r’sin’@ 99 r’sin@ 0609  r Or

, Singcos¢ J’ f cos’ ¢cos@ 9 f

r a¢8r r’sinf 06

cos¢cos@sing 9 f _cos¢sin¢8f+ cos’¢ 9*f
r’sin@ 9098 r’sin’@ 99 r’sin’6 ¢’

92 ozl oz

0z oz

( d sinf d df sin@af
%%~ aa](‘”s ErarT

'coszeaz S ,cosBsin6df cosfsin6 9°f  sin’69f
a7 08 r orde r or

r
_sinBcosf 9’ f 4 Sinfcosf 9 f d9f  sin 09 f
, 30 r 08*

r d89r r

-4y

P f If azf
2
E ’s, 58 cos? g+sin’ o)+ i
{sm 6(cos’ g+sin’ 9) +cos® G}a 2| (cos® g +sin’ @) sin2g oar
+
r r

r’ r

96’

cos’ @(cos’ ¢+ sin’ 2 29| 52
+{ ( [ ¢)+sm G}B_f

) sinfcos@ 81
r’ d6

2 r?

—cosOsinB|cos” ¢+ sin
+{ ( i ¢) cosoo(sm o+cos’ ¢
r
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. (sin® g+cos’ 9) g2 1 .
r’sin’@ 99’

All other terms cancel each other with the substitutions like (.?: i{e = ;62 E‘)fr ;

Thus:

B S P =S 23] 1P cos0df | &S
' * ar 9’ ror r 90> r’sin@dl r’sin’6 ¢’

=ii(rza—fJ+ 1 a(sinoa)+ L__& (25)

2sin? 6 99°

or ) r*sin6 08 20

as is commonly written in the text books.

r’or

4. The volume element and limits of integration in spherical polar coordinate
system:
In Cartesian coordinate system in three dimensions (x, y, =), the primitive volume element
is dV =dt = dxdyd:= . In polar coordinate system as above, the volume element is expressed

in terms of the infinitesimal elements dr, d@ and d¢ as

d o dx
o 96 0
d I I

ar 06 3¢
o 0z oz
or 06 30

where we use the absolute value of the determinant. The derivatives are easy to calculate

given that
x=rsin@cos@
y =rsinfsing.
z =rcosé

Therefore,
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sinfcos¢ rcosfcos —rsinfsing
dxdydz = det| sin@sing rcos@sing rsinBcos¢ |drd6dd =r’sinfdrdfdo

cos6 —rsin@ 0 @n

The limits of integration in Cartesian coordinates are extended throughout the three
dimensional space, namely, x — —cot0 o0, y — —cot0 eo and z — —eot0 co. The same
universal volume in three dimensional space is obtained by the limits

r—>0toe, 80 torand o —0to 27.

See my animation on spherical coordinate limits.

Therefore average values calculated in the spherical polar coordinate system would use the

limits and the volume elements as

I r” drj sinOdGT do---.
6=0

r=0 0=0

5. The Hamiltonian for the hydrogen atom:
The quantum mechanical Hamiltonian for hydrogen atom is expressed using a
simple separation of coordinates of the nucleus from that of the electron using
classical two-body kinematics. The translational energy of the atom being due to the
kinetic energy of the atom as a whole, it is not considered. The relative motion is
that of the two-body system with the reduced mass given by,
y=—mfl—n'—=m, since m,>m, andm,+m,=m,. (28)

m,+m,

Since this is the mass of the electron, the relative motion of the electron is due to the
kinetic and potential energy of the electron with the nucleus being assumed
stationary. This is also referred to later as the Born-Oppenheimer approximation.
Thus the electron coordinates may be referred to the axis system centered on the

nucleus and the kinetic energy and potential energies of the electron are given by,

2
2
= and V=- Ze , (29)
4nre,r

Pl () +(p.),+(p.)
2m¢ 2m

e
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where Ze is the charge on the nucleus and r is the distance between the point
charges. This is a classical approximation. In quantum mechanics, the corresponding
quantities are given by operators, resulting in the Hamiltonian,
9 2 Ze*
7+ %) * Py ]_ 25 93 o 2
y Z 47woJx +y“ +2

) (30)

where the wave function for the electron is expressed in the position coordinates of

the electron x,y,z with the origin at the nucleus. The solution of the Schrédinger
equation is thus the solution of the differential equation
n’ o o Ze’
sttt J_ > 2
2m dy” oz 4re, Jx +y“ +z

e

- }W(x,y,z) =Ey(x,y.2)

Hy(x.y.2) ={

(1)

The stability of the Hydrogen atom is still an unexplained interplay between the
electron’s potential energy balanced by its kinetic energy. Neither of them can be
determined exactly in the classical sense without losing complete information about
the other since the two energy terms, as operators, do not commute with each other.
Thus kinetic energy and potential energy of the electron in the hydrogen atom
cannot be simultaneously, and accurately, determined, but the overall energy can be,
by the solution of the Schrédinger equation as above. This is best done, using
spherical polar coordinates by expressing the Hamiltonian in spherical polar
coordinates, and that was the object of the previous section in this lecture notes.
Expressed in such a coordinate system, the potential energy depends only on the
radial distance r and therefore, the r-dependent kinetic energy and potential
energy terms can be separated out and solved as a radial distance problem. The
overall energy of the system gets absorbed in the radial equation and the remaining
terms of the kinetic energy are solved as angular problem. The details of the

separation procedure are given below.

First write down the Schrodinger equation in spherical polar coordinates
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x=rsinfcoso
y =rsin@sing
z =rcosf,

v(x,y,2)=Y¥(r.0.9)

H(r.6. ¢)‘P(r,9 9)

_n 1a 8]+ 1 a(smea) 1 2|
| 2m,| P or " or )T Psin6 00 90 ) r’sin’09¢’ | 4ne,r

= E‘P(r,0,¢)

W(r.6.0) = R(r)0(6)®(0)

1 d dR 1 d
,—;(m— o(6)o(o) + ——2

g S R >e(o

{4_;?5} (r)6(6) o(¢)=0

(33)
Multiply by 7, divide by R(r)e(9)¢(¢) . The equation separates into an r-only-

dependentand a 8¢ dependent-part terms.

-h?|1d( ,dR)  2mr*( ZZ
= [Rdr(r dr]+ n (4fu£or+E

“hf_ 1 d(,d0), 1 d®|
2m,| sin © d6 d6 ) ®sin’6 do’

The second line in the above can be identified with the square of the orbital angular

momentum of the electron (around the nucleus) and can be identified as follows:

ﬁ[ ! 1[si,,od_9]+ ! d’d']:_h’ﬁ

2m, | sin6© db d6 ) ®sin’6 do’ | 2m, -

which remains a constant. We shall therefore equate the 8¢ dependent parts to a constant

— /3, then the r dependent part of the equation becomes
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-h’|1d rzg L 12m & E:+
2m, {Rdr\' dr) R W |r
Eq. (5)
The 8¢ equation is

w[ 1 d(.,de | d®
L T YT PO .. | Y
2m, [sinae do(s"‘ de] Dsin’6 d¢2]+ﬁ

Separate the ¢ equation by setting

Multiply by sin * @ and rearrange them

sin6 d (o odO) o0l 1 d
[9 de(smo d9] B'sin 0]+<I>d¢2 =0 -

The @ equation may be equated to a negative constant (must satisfy periodic boundary
condition; —m*does not do that)
1do__ .
@ do*
@(9) = 71—e"’" m=0,%1,+2...
2r

Then the © equation is

i T [ oo ) Pocali . e _
smede(sme doJ (ﬂsm 6+m )9 0

choose cosf=x,0=0->r=x=+1>-1

d 8. & _ gngld
d6 — dx do dx

= V1= 4 0(6) = P(x)
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= -VI-2 1 —xzi(wll -x2 (=) 1 =% %]
[ (=) n]r(s) =0

(l_xz)%((l_xz)%]_[p'(l_xz)mz]p(x):o

The choice f' =-1 (l +1). where / is a positive integer (0,1,2,3, ...) enables the theta (x)
equation to give converged solution. With the choice m = 0 this equation is identified with
the celebrated Legendre equation. For the choices 8'= —/(/+1) and m# 0, it is the same

as the associated Legendre equation. In the solution of the Legendre equation, you will

see why this choice for /' is both reasonable and acceptable.

The angular part given by the product 9(0)0(4)) is known in mathematics literature as

SPHERICAL HARMONICS. The overall solution ¥(r.6.6) = R(r)©(6)®(¢) is dependent

on three quantum numbers, n, I, m where the possible values for the quantum numbers
are

n=1%12, 3; ...

/=0, 1,2, -, n-1

m=0, £1, £2, ... £/

The eigenfunctions of the Hamiltonian and the eigenvalues are of the following form when
the three equations are solved analytically using a power series method to solve the second

order differential equations for the radial part and the angular part, namely

HY,, (r.6.0) = HR!(r)Y"(6,6)=E,R!(r)Y"(6,0);

The energy depends on only the quantum number n, known as the principal quantum
number. The quantum numbers | and m are known as azimuthal and magnetic quantum
numbers, respectively. The specific forms for lower order spherical harmonics are given
below:
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Y.,°(e,¢)=Jg
3 3
Y'(60) = \/;P,“(cose) J;cose
v'(69) = —J%x%sinae"‘ = —‘/gsinﬂe“
e 3 - -ip _ \/E P
17 (69) = ,/ X2 X( 1) —sinfe 5. Sinbe

Y, (69) = J_ (3cos 0- l) =
Y, (69) ‘]; cosBsin@e”
Y;'(69) = \lgcowsinee"‘

Y, (69) =1’ixl3sm02" =
Y (60 J—x24x 3sin’@e™* = 315

‘{ Scos 60— 3cos0)

Y,*'(qu) 5cos 06— l)e*“

\/_
¥2(69) = F 2gcosbe™
J_

sin’® G

v (60)
The angular functions are homogenous functions in sinf and cos@ with the degree / .
Thus a function like 3cos’ 6 —1 is a homogeneous function written as

3cos” 8- sin? @ — cos’ @ = 2cos’ 0 —sin’ @ which is second degree, namely /=2 ;a
function like
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5cos’@—3cosf =5cos’ 6 —3cosb (sin2 6+ cos’ 8)
=2cos’ 6 —3cosBsin’ @
is of third degree, namely /= 3. Every such function has / angular nodes.

The radial solution is given using a polynomial set known as Laguerre polynomials. They
are indexed by two quantum numbers and have the general form

1
] P(Zr 1 a,)e "™ (43)

Ri(r)= N(n,I)[é
a

0
where the function P"~"'(Zr/a,) is known as the Laguerre polynomial of order n—/—-1.

Since there are that many zeroes for the polynomial all of which are real, the number of

radial nodes will be n—17—1. The quantity N(n,/) is the normalization constant, to be

identified below. They are listed below for n=1 to n =3 and for all possible /, as

n.l | R/(r) | Function

L0 | R(r) 2(
32
2,0 | RY(r) 2(1] (1-3]#’""-

2a, 2a,

2 ( 7 302 N
2,1 Rz‘(r) 7;(5] (E]e—mza‘,

32 2

i - ﬁ 3 A —Zr!3a,

3.0 | R(r) 2(3%] [1 2(3%] 3(300J ]e
)

31 R;(r) 4\/5(%] (%](]_%[%]]e—blh.

32| oy | B2(Z) (2 o
3% W; 3a, 3a,

With the definition of the radial function and the angular parts as above, it is easy to

visualize that there are n” orbital functions for any principal quantum number 7 . This is

because, for any n, we have
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n—-1
2(21 +1)=143+5+---+2n—1=n" as the degeneracy of the orbital quantum number
=0

since all energies for a given n are identical. These are known, for
1=0,1=1,1=2,1=3,... as ns, np, nd.nf ..., orbitals respectively, wherever the
quantum numbers obey the conditions.

Therefore, the table of orbitals from 1s to 3f orbitals are given below with all the
normalization constants included. The normalization integral is to be understood as

follows:

Ir’ drjsine daT ahp[k,',(r)]’|Y,"(e,.;xu)|2 =1. (44)
0 0 0

This integral is the product of an integral of a radial distribution function and an angular
distribution function as

fra[R(] ®]sinods | dolr=@.6f =1.
0 0 0

2
The function dr[R,',(r)] is the probability of finding the electron in a spherical shell

enclosed by two spheres of radius » and r+ dr Itis called radial probability. The other,

|)’,'I (O,ﬂ2 sinBdBd¢ is the angular probability of locating the electron in an angular area
on a sphere trapped between8 and 6 +d6 and ¢ and ¢+d¢.
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7 |
—Zrl3 .
] e """ cosBsinfe

2
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Function

2
Z
4a,

e % cos@

e %/*% inge**
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Animations and Figures:

Spherical Harmonics in two and three dimensions (Real and imaginary parts of ¥,"(6,0) for

[=0,1,2,3. There are sixteen figures in the pages below for all angular orbitals of elements
that appear in the periodic table.

[=0, m=0 Constant= -1—
4dr

23

Scanned with CamScanner



Maye 25 0¢p 42
Title of PDF Document
Thisisthe subtitle of PDF, Use long text here.

I=1, m=0 Y'(6.9) =<cos® p.

Polar plot of function cos(0) H 4« > »Hr

PROCEDURE
1. Vary angle theta made by the vector with z axis for values (0 < 0 < n)
2. Draw circle of radius r = cos(0). Mark the point of intersection of circle with the vector

3. This plot is made for ¢ =0

VA
1—e—
©
0 cos(B) .
0 1
15 0.965926 .
30 0.866025
45 0.70711
60 0.5 p
75 0.25882 , 1
90 0 o
105 -0.25882
120 -0.5
135 -0.7071
150 -0.86603
165 -0.96593
180 -1
B positiv 1c of the function
I ncgative value of the function )

24
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I=1, m=1 Re[)'ll((),d))] e<sinfcosd p,

Polar plot of function (sin(B)cos(¢)) < « B > » »

PROCEDURE
1. Vary angle theta made by the vector with z axis for values (0 < 6 < m)

2. Draw circle of radius r = (sin(0)cos(d)). Mark the point of intersection of circle with the vector

3. This plot is made for ¢ = 0 (orcos ¢ = 1)

sin(0)

0
0.2588
05
0.7071
0.8660
0.9659
1
0.9659
0.8660
0.7071
05
0.2588
0

1—
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p,

Polar plot of function (sin(0)sin(¢)) H«E D> »H

PROCE

1. Vary angle theta made by the vector with z axis for values (0 < 0 < 1)

DURE

2. Draw circle of radius r = (sin(0)sin(¢)). Mark the point of intersection of circle with the vector

3. This plot is made for ¢ =90 (orsin$=1)

sin(0)

0
0.2588
0.5
0.7071
0.8660
0.9659
1
0.9659
0.8660
0.7071
0.5
0.2588
0
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I1=2, m=0 Y,(6.9) o<(3cos:9—1]; dl_z_,: or often written as d ,

Polar plot of function (3cos*(0) - 1) M« B> »H

PROCEDURE
1. Vary angle theta made by the vector with z axis for values (0 < 0 < )
2. Draw circle of radius r = (3cos*(0)-1). Mark the point of intersection of circle with the vector

3. This plot is made for ¢ = 0

2—4

0 3cos?(0)-1 X

0 2

15 1.799 |

30 1.25 P

45 0.5

54.74 0

60 025 4

75 -0.799 O
90 -1 i N
105 -0.799 P
120 -0.25 .
125.26 0
135 0.5
150 1.25
165 1.799 ?
180 2

»
i) 5 2
2
B value of the function

. (/;/'///ln AR
( _
.

P - A

27
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=2, m=1 I{e[)':'(e.q)):l <cos@sinfcosp, d_

Polar plot of function (sin(8)cos(B)cos()) H«uD>»Hr

PROCEDURE

1. Vary angle theta made by the vector with z axis for values (0 < 0 < )

2. Draw circle of radius r = (sin(0)cos(0)cos(¢)). Mark the point of intersection of circle with the vector

3. This plot is made for ¢ = 0 (orcos ¢ = 1)

sin(0)cos(0)

0
0.25
0.433
0.5
0.433
0.25
0
-0.25
-0.433
0.5
-0.433
-0.256
0

ative value of the function

1

28
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I1=2, m=1 lm[)!(@.tb)] o<cosBsinfsing;,  d_

Polar plot of function (sin(6)cos(0)sin($)) OO0

PROCEDURE

1. Vary angle theta made by the vector with z axis for values (0 < 0 < )

2. Draw circle of radius r = (sin(6)cos(0)sin(¢)). Mark the point of intersection of circle with the vector

3. This plot is made for ¢ = 90 (orsind = 1)

sin(0)cos(0)

0
0.25
0.433
0.5
0.433
0.25
0
-0.256
-0.433
-0.5
-0.433
-0.25
0

1
| J

29

Scanned with CamScanner



Maye 31 op 42

Title of PDF Document
Thisisthe subtitle of PDF, Use long text here.

l1=2. m=2 Re[)f(eﬁd))] o< sin’ 6cos2¢; (sin’@cos’ ¢—sin’Osin’ @)  d.

Polar plot of function (sin%(8)cos(24)) IO MY i

15
30
45
60
75
90
105
120
135
150
165
180

=y~

last

PROCEDURE
frame

1. Vary angle theta made by the vector with z axis for values (0 < 0 < )
2. Draw circle of radius r = (sin?(0)cos(2¢)). Mark the point of intersection of circle with the vector
3. This plot is made for ¢ = 0 (orcos 2¢ = 1)

sin(0)
0
0.0669 |
0.25 "
0.5 i
0.75 o
0.933 1
1 \
0.933
0.75
05
0.25 = .
0.0669
0

i
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1=2, m=2 lm[)f(@,m] o< sin” Bsin2¢; (sin@cosPsinfsing) d,

Polar plot of function (sin*(0)sin(24)) H«ED>»H

PROCEDURE
1. Vary angle theta made by the vector with z axis for values (0 < 0 < )
2. Draw circle of radius r = (sin?*(0)sin(2¢)). Mark the point of intersection of circle with the vector

3. This plot is made for ¢ = 45 (or sin 2¢ = 1)

Polar plot of (sin*(8)sin(2¢) )

0 sin?(0)sin(2¢)| [(0 <0 <m); ¢ =45 (orsin (2¢) = 1)

0 0

15 0.066987

30 0.25 "

45 0.5 o

60 0.75 P .

75 0.933013 y

90 1 P b~ 45 ) §
105 0.933013 A T
120 0.75
135 0.5 - X o
150 0.25 2 »
165 0.066987
180 0
o}
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=3 m=0 I:)‘;“(G.q)):l o< (5¢co0s’ 0 —3cosH) f

327

Polar plot of function ((5cos'(8)-3cos(6)) H«®D>»H

PROCEDURE
1. Vary angle theta made by the vector with z axis for values (0 < 0 < )
2. Draw circle of radius r = (5cos’(0)-3cos(0)). Mark the point of intersection of circle with the vector

3. This plot is made for ¢ =0

22—y
0 Scos'(0)-3cos(0) %
0 2
15 1608328
30  0.649519
39.2 0
45  -0.35355 -
60 -0.875 iy 3
75 -0.68977 e |
90 0 .
105 0.689769 e
120 0.875 o
135  0.353553
140.8 0
150 -0.64952
165  -1.60833 |
180 -2 /
= L
B gt lue of the functior
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=3, m=1 Re[)'ﬁ(@,d))] <(5cos’@—1)sinfcos¢p [ _,

Maye 34 042

x(3="-r")

Polar plot of function ((Scos*(8)-1)sin(6)cos()) M« ED>»H

PROCEDURE

1. Vary angle theta made by the vector with z axis for values (0 < 0 =

n)

2. Draw circle of radius r = (Scos*(0)—1)sin(0)cos(¢). Mark the point of intersection of circle with the vector

3. This plot is made for ¢ = 0 (or cos ¢

0 (5cos*(0)-1)sin(0)

0
15
30
45
60
71.05
75
90
105
108.95
120
135
150
165
180

0
0.948588
1.375
1.06066
0.216506
0
-0.6424
-1
-0.6424
0
0.216506
1.06066
1.375
0.948588

1)

e
L
[ ]
3
| Z i : 1
o >
/
[ B
o
L]
L
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1=3 m=1 lm[)’f(&q))} o<(5cos’@—1)sinfsing [ _

Woz'-r’)

Polar plot of function ((Scos*(6)-1)sin(6)sin(¢)) H«ED>»H

PROCEDURE
1. Vary angle theta made by the vector with z axis for values (0 < 6 < )

2. Draw circle of radius r = (Scos*(0)—1)sin(0)sin(d)). Mark the point of intersection of circle with the vector
3. This plot is made for ¢ =90 (orsind = 1)

L
1 =

0 (5cos*(0)-1)sin(0) o

0 0 °

15 0.948588

30 1.375

45 1.06066

60 0.216506

71.05 0 . 1

75 -0.6424 L~ |

% -1 T 3
105 -0.6424 -—
108.95 0

120 0.216506

135 1.06086

150 1.375

165 0.948588 L]

180 0 ®
. . r .
B ncgative value of the function
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Maye 36 0@ 42

=3, m=2 Re[)f((—)ﬁ)] KsinzeCOSQCOSZO ~cosH(sin:OCOSZO—Sinzesin:(;b)

Polar plot of function (sin*(8)cos(B)cos(24)) H«Bm > »H

PROCEDURE

1. Vary angle theta made by the vector with z axis for values (0 < 0 < 1)

]

0
15
30
45
60
75
90

105
120
135
150
165
180

2. Draw circle of radius r = (sin*(0)cos(0)cos(2¢)). Mark the point of intersection of circle with the vector

3. This plot is made for ¢

sin*(B)cos(6)

0
0.064705
0.216506
0.353553
0.375
0.241481
0
-0.24148
-0.375
-0.35355
-0.21651
-0.0647

0

ve value of the function
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=3, m=2 lm[)f((),q‘))] e<sin’ @cos@sin2¢ ~ cosOsinOcosPsin@sing
/.

v oxy

Polar plot of function (sin()cos(6)sin(24)) MW E D> P

PROCEDURE

1. Vary angle theta made by the vector with z axis for values (0 < 0 < n)

2. Draw circle of radius r = (sin?(0)cos(0)sin(2¢)). Mark the point of intersection of circle with the vector
3. This plot is made for ¢ =45 (orsin2¢=1)

1
P
0 sin’(0)cos(0) |
0 0
15 0.064705
30 0.216506
45 0.353553
60 0.375 I e
75 0241481 R )
%0 0 B e
105 -0.24148 :
120 -0.375 - " 2
135 -0.35355 S
150 -0.21651
165 -0.0647
180 0
.
I ncgative value of the function
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=3, m=3 Re[)‘i:':(e.(]))] o< sin’ ¢cos 3¢ ~(Sin€cos¢f—3(sin95ind)):sin9cos¢)

Yx(x"=3y")

Polar plot of function (sin*(0)cos(3¢)) H« B> »r

PROCEDURE
1. Vary angle theta made by the vector with z axis for values (0 < 6 < x)
2. Draw circle of radius r = (sin*(0)cos(3¢)). Mark the point of intersection of circle with the vector

3. This plot is made for ¢ =0 (orcos 3p=1)
Youid

0 sin(8)

0 0

15 0.01733

30 0.125

45 0.3535 .

60 0.6495 of -

75 0.9012 P 1

L) 1 {
105 0.9012

120 0.6495

135 0.3535 " -
150 0.125 .

165 0.01733

180 0
=
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/=3 m=3 lm[)’f(am] o< sin’ Bsin3¢ ~3(sin6cos¢)zsinGsin(D—(sin()sin(l))j

¥ (3x"-y")

Polar plot of function (sin*(8)sin(3)) e« m»»o)
last

PROCEDURE
1. Vary angle theta made by the vector with z axis for values (0 < 6 < x)
2. Draw circle of radius r = (sin*(0)sin(3¢)). Mark the point of intersection of circle with the vector

frame

3. This plot is made for ¢ =30 (orsin 3¢ = 1)

1] sin'(0)
0 0
15 0.017338
30 0.125
45  0.353553 =
60  0.649519 S -
75 0901221 b ;
90 1 — -
105  0.901221 — A —Z %= W +
120 0.649519 s . — x
135  0.353553 e o 2
150 0.125 - e
165  0.017338
180 0
=1
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Radial Functions and the Radial distribution function plots for various values of n and /

n=2,
1=0 and
1=1
togethe

r

radial function for the hydrogen atom (n=1)

4
vwiuenmo 105, Zfao =1
radial function for the hydrogen atom (n=2)

o T

5 10
rvaries from 0 to 15, Zfao =1
radial function for the hydrogen atom (n=2)

017G

5 10
rvares from 0 to 15, Z/ao =1

radial functions for the hydrogen atom (n=2)

rvv'néhmow 15.”-0 =1

Radial probabilty density

radial probability for the hydrogen atom (n=1)

06

robabity
=

radial
o
N

0 ] 4
rvaries from 010 5, Z/ao =1

radial probability for the hydrogen atom (n=2)

o
5]

Radial probability density

5 10
rvaries from 0 to 15, Z/ao =1

radial probability for the hydrogen atom (n=2)

o
i

Radial pmbagbilily density

09 5 10
rvaries from 0 to 15, Zfao =1

radial probabilities for the hydrogen atom (n=2)

02

rw’nghwnl.'llu IS.WMFI I8
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radial function for the hydrogen atom (n=3) Tadial function for the hydrogen atom (n=3)

)

Radial prabability density
R

———

N

rvuiul‘-?rmmos.llwﬁﬁ rm‘icollmnotoﬁ.llzo]oﬂ

Tadial function for the hydrogen atom radial p ity Tor the gen atom

Radial pgblbil’ly density
R

10 2 0 2
rvanies from 0 to 25, Zfao =1 rvaries from 0 to 30, Z/ao =1

radial function for the hydrogen atom (n=3) radial probability for the hydrogen atom (n=3)

o
=

Radial probability density
2

10 il 0 20
rvanies from 0 to 25, Zfao =1 rvaries from 0 to 30, Zfao =1

radial functions for the hydrogen atom (n=3)

radial probabilities for the hydrogen atom (n=3)

=]
=

Radial rgobabi‘ly density
R

3]
rvanies from 0 to 25, Z/ao =1

10 20
rvaries from 0 to 25, Z/ao =1
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0 H» N 0 N @ W 0 W 0 W0 220 0 49 S5 6 70 B0 9 100
radius (r) adius (1)

Radial function plot 4d Probabilty plot of 4d orbital
=4

0 220 2 4 S5 6 7 @ 0 W 0 2 » 4 ™ 8 ™ o 80 10
radius (r) adius (1)

Probabilty plot of 4f orbital

plot 4f
=2

0 2 0 4 S @ 7 8 6 100
radius (1)

n=4,
1=0, 1=1,
1=2 and
1=3
togethe

Additional sample calculations are provided by a separate handwritten notes in your
website. If you find mistakes in these please let me know. Thank you very much. Mangala

Sunder
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